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Abstract: Autonomous driving is becoming a major scientific challenge and applied domain of significant impact, also
triggering a demand for the enhanced safety of vulnerable road users, such as cyclists and pedestrians. The
recent developments in Deep Learning have demonstrated that monocular 3D pose estimation is a potential
detection modality in safety related task domains such as perception for autonomous driving and automated
traffic monitoring. Deep Learning offers enhanced ways to represent targets in terms of their location, shape,
appearance and motion. Learning can capture the significant variations seen in the training data while retaining
class- or target-specific cues. Learning even allows for discovering specific correlations within an image of a
3D scene, as a perspective image contains many hints about an object’s 3D location, orientation, size and iden-
tity. In this paper we propose an attention-based representational enhancement to enhance the spatial accuracy
of 3d pose and the temporal stability of multi-target tracking. The presented methodology is evaluated on the
KITTI multi-target tracking benchmark. It demonstrates competitive results against other recent techniques,
and when compared to a baseline relying solely on a Kalman-Filter-based kinematic association step.

1 INTRODUCTION

Spatial awareness and reasoning are fundamental
traits of modern vision-based robotic systems. How-
ever, monocular (single view) vision-based percep-
tion is associated with ambiguities such as depth-scale
ambiguity or viewpoint invariance. These ambiguities
arise from projecting the 3D world onto a 2D imaging
plane, where multiple 3D scene configurations can re-
sult in the same projected image if scale information
is a priori not known. Many ambiguities associated
with a single view can be mitigated if the views cor-
respond to a street-level observer observing common
object types with more-or-less known dimensions. In
such cases, the learning task can be formulated such
that a 2D image content can be regressed to a set of 3d
object locations on a ground plane with an estimated
heading orientation.

Image-based 3D object detection and pose pa-
rameter regression are typical multi-task learning
problems as they require classifying image content
into classes while also regressing their 3D bounding
boxes. Association of detected objects to consistent
motion trajectories can be facilitated by including a
re-identification task (reID), which distils each ob-
ject’s appearance into a compact and discriminative
feature set (Wang et al., 2020).

This work proposes a representation-enhanced
end-to-end Deep Learning approach for 3D pose-

aware multiple-object detection and tracking, using
only monocular RGB images as input. Its represen-
tational concept is based on an encoder-decoder type
multi-task learning scheme while also integrating re-
cent representational breakthroughs devised explicitly
for coping with spatial ambiguities and association
uncertainties. The tracking integrates a reID approach
that utilizes a Transformer Encoder (Vaswani et al.,
2017) with deformable attention (Zhu et al., 2020) to
obtain target-specific appearance features using a spa-
tially delocalized exploration and correlation scheme.
The proposed methodology is evaluated for the multi-
target tracking task employing the KITTI benchmark-
ing scheme and compared to several recent competing
algorithmic concepts.

The paper is structured as follows: in Section 2
we describe related works. Section 3 presents the pro-
posed methodology, which is evaluated and discussed
in Section 4. Finally, Section 5 concludes the paper.

2 RELATED WORK

This section provides a brief overview on relevant
state-of-the-art approaches of monocular 3D object
detection and tracking. First, basic concepts of 2D
object detection schemes are presented. Next, based
on the described core concepts, prevailing represen-
tational extensions towards monocular 3D detection



and parameter regression are characterized.
Object Detection: Object detection frameworks can
be categorized by their architectural aspects. Accord-
ingly, two-stage, single-stage and anchorless detec-
tors can be distinguished.
Two-Stage Detectors: As the earliest detection con-
cepts, two-stage detectors first generate region pro-
posals and then classify them as either one of the pre-
defined object categories or background. Classified
regions of interest (ROIs) can be further refined, and
additional attributes can be predicted. The earliest
model using this approach is the Region-based con-
volutional neural network (R-CNN) (Girshick et al.,
2014), followed by the Fast R-CNN (Girshick, 2015)
and Faster R-CNN (Ren et al., 2017) models.
Single-Stage Detectors: Considerations of compu-
tational simplification have led to single-stage de-
tectors, which combine the two steps into a single
step and view object detection as a regression prob-
lem. This concept was introduced by YOLO (Red-
mon et al., 2016) which divides the image into an
S×S grid and predicts for each cell class probabilities.
Combining both stages into one yielded an improved
run-time performance while retaining competitive ac-
curacy. Its successor versions (Redmon and Farhadi,
2017; Redmon and Farhadi, 2018) still achieve state-
of-the-art results.
Anchorless Detectors: Both, R-CNN and YOLO are
anchor-based detectors, as they operate with a fixed
number of region candidates for predicting objects
and refining their delineations. Anchorless detectors
on the other hand do not use such pre-defined boxes.
Instead, they formulate box parameters (such as the
center or corners) as key-points and regress corre-
sponding bounding box parameters directly. Among
the first models adopting this approach were Cor-
nerNet (Law and Deng, 2018) and CenterNet (Zhou
et al., 2019). In these works, network output yields
a down-sampled dense grid and predictions of rele-
vant object points at each cell. This simple infer-
ence scheme is complemented by additional object
attribute estimators. CenterNet achieved state-of-the-
art results while significantly reducing run-time.
Monocular 3D Object Detection: Common 3D ob-
ject detection schemes predict 3D object attributes
on a common ground plane, hence extending the 2D
bounding box representation. The correlation be-
tween the image space and 3D world space is learned
end-to-end from annotated training data. In the next
section, a concise overview on different representa-
tions used for monocular 3D detection is given.
Concepts: Image formation can be commonly ap-
proximated by a linear pinhole camera model, pro-
jecting points from a 3D space onto a 2D image plane

Figure 1: Projection of a 3D camera-centered point pc onto
the sensor plane at p. [xc,yc,zc] are the camera coordinate
system, [xs,ys] the image coordinate system.

(Figure 1). Thereby, camera-centric world coordi-
nates are commonly used (Szeliski, 2022) to define
the spatial relation with respect to an object. Given a
set of image-space coordinates for an object, the re-
construction of the corresponding 3D coordinates re-
quires the depth (distance) of the object location. This
information, however, is not contained in a monocular
image and therefore needs to be directly estimated via
a learned model. Additionally, there is an ambiguity
between object size and depth, as there is no way of
telling only from the image whether an object is small
or just far away and vice versa.
Representations: Early neural approaches for monoc-
ular 3D object detection used a two-stage approach
containing a template matching step (Chabot et al.,
2017). Image content within detected objects were
matched with templates, leading to inherent limita-
tions regarding the number of template models. Other
approaches transform the street-level front-view im-
age into another data spaces, such as a birds-eye-view
(BEV) (Kim and Kum, 2019; Roddick et al., 2018;
Srivastava et al., 2019) or a pseudo point cloud (Weng
and Kitani, 2019); the latter computed via a monocu-
lar depth estimation network (Godard et al., 2017). In
the BEV space, the task is reduced to an oriented 2D
bounding box detection, while the pseudo point cloud
representation enables the use of off-the-shelf LiDAR
detection schemes.

Our proposed method also follows the strategy
of directly regressing spatial and class-specific object
properties. Typical schemes adopting the regression
concept are CenterNet, regressing 2D bounding box
parameters and SS3D (Jörgensen et al., 2019), which
additionally regresses distance, dimensions, observa-
tion angle and projected 3D bounding box corners.
Multi-Target Tracking: Multi-target tracking aims
to associate and partition time-consecutive detection
responses such that each partition belongs to the same



target identity. Its computational scheme can be on-
line or off-line, depending on whether an access only
to the most recent, or also to all previous observations
is given. In the followings typical location-, motion-
and appearance-based cues are described which sup-
port the underlying association task:
Location- and Motion-based Methods: Physical con-
straints governing object motion typically define
strong criteria which aid association. A common ap-
proach to treat tracking as a filtering process, where
association (Kuhn, 1955) and prediction steps (e.g.,
by a Kalman Filter (Kalman et al., 1960)) alternate
during the tracking process. Modern variants, such as
SORT (Bewley et al., 2016) and AB3DMOT (Weng
et al., 2020) employ a similar concept. Motion-based
approaches tend to have issues in crowded scenes and
in presence of low framerates, where location/motion-
correlation of targets degrades.
Appearance-Based Methods: The abstraction capa-
bility of neural representations offers powerful means
to capture the appearance of targets and use it in an
association step. Architectural concepts range from a
sequential multi-stage (detect, encode and associate)
to parallel, multi-branch (Voigtlaender et al., 2019)
approaches. Such feature-based similarities or em-
bedding can again be used in a conventional asso-
ciation step. Contrary to motion, appearance-based
methods tend to be robust to detection gaps and larger
inter-frame displacements.

Since object detection and tracking are mutually
supporting intermediate processing steps, it is intu-
itive to formulate them as a jointly trained multi-task
problem. In our work we adopt a tight coupling be-
tween these tasks, by using a common backbone for
feature computation, followed by task-specific sub-
networks. Our proposed scheme devises mutually
supporting representations, which attempt to simul-
taneously meet criteria of 2d projective, 3D BEV and
target specificity constraints.

3 METHODS

In this section, we describe the proposed monocular
3D multi-target object detection and tracking frame-
work, including the proposed enhancements regard-
ing the computational backbone network and the reID
branch. Additionally, the loss functions used for the
optimization process are detailed.

Monocular 3D Multi-Target Detection &
Tracking: The aim of the proposed detection and
tracking network is to simultaneously predict the 3D
location, dimension, orientation, and ID of objects
given a sequence of monocular RGB images as in-

put. The overall network architecture is extended
from CenterNet, which utilizes object centers to iden-
tify objects and detection responses are obtained via
predicting a confidence heatmap. Several regression
heads are used to obtain the desired 3D bounding box
of each object. A Transformer Encoder network cal-
culates an embedding for each object that aids in iden-
tifying each unique object instance across a sequence.
The overall architecture is illustrated in Figure 2.
Attention Enhanced Backbone: The proposed frame-
work uses the hierarchical layer fusion network DLA-
34 (Yu et al., 2018) as its computational backbone net-
work. The hierarchical aggregation connections are
replaced by deformable convolution (Zhu et al., 2019)
layers as in CenterNet. To further improve the ability
to consider long-range dependencies within the im-
age, the deformable convolution layers have been en-
hanced with an additional attention layer that only uti-
lizes the information contained in the key as the query
content and the relative position are already covered
by the deformable convolution (Zhu et al., 2019).
Object Detection and Representation: The 3D infor-
mation of an object is encoded via seven parameters:
[x,y,z,h,w, l,α]. Here, x, y and z are the 3D location
of the object center, h, w and l represent the object
dimensions and α denotes the apparent yaw angle of
the object on the ground plane. Object centers are
predicted using the position on the heatmap combined
with a regressed offset. To obtain more accurate pre-
dictions in cases where objects are located near the
image border, the decoupled representation in com-
bination with the edge fusion module proposed by
(Zhang et al., 2021a) was also incorporated into the
model. In addition to the location prediction from the
heatmap, the offset due to discretization is predicted
as well. The network predicts the apparent yaw angle
directly. The depth is predicted using two approaches,
mutually supporting an accurate depth estimation: On
one hand, the depth is directly regressed. On the other
hand, the corner points of the 3D bounding box are
utilized to validate a second depth prediction. This
is achieved by using the relative proportion between
pixel height and estimated object height. Given the
cameras focal length, the depth of the vertical line
from a top corner to the corresponding bottom corner
of the bounding box can be calculated as:

zl =
f ×H

hl
(1)

where f is the focal length, H the predicted object
height, hl the pixel height of the vertical edge of
the bounding box and zl the resulting depth. The
weighted sum of the calculated depths is the final pre-
diction. Here, the weights are given by the inverse of
an uncertainty prediction, that the model regresses for



Figure 2: Illustration of the overall network architecture. Highlighted boxes emphasize the proposed novelties: yellow rep-
resents the attention-enhanced backbone, red illustrates the Robust Kullback-Leibler loss and green the Transformer Encoder
reID subnetwork.

each depth.
ReID and Tracking: The proposed method fol-

lows a joint detection and embedding approach and
incorporates a reID branch atop of the backbone fea-
ture extractor, like FairMOT (Zhang et al., 2021c).
However, instead of using a Convolutional Neural
Network (CNN) as a subnetwork to extract the em-
beddings, a deformable Transformer Encoder (Zhu
et al., 2020) is used to capture long-range relation-
ships between the extracted features. The extracted
features are enriched with a positional embedding to
preserve spatial relations. Three separate linear layers
generate sampling offsets, attention weights and fea-
tures values. The sampling offsets are used to obtain
key sample values, which are then multiplied by the
attention weights and their aggregation is performed.
A final linear layer generates the outputs. The dis-
tances between the generated embeddings are used to
calculate a cost matrix between existing tracks and
new detection responses. Assignment is then accom-
plished using the Hungarian algorithm (Kuhn, 1955).

Loss Functions A weighted sum of multiple loss
functions is used to train the proposed framework. In
this section, the individual loss components are de-
scribed.
Like in (Zhou et al., 2019), the penalty-reduced focal
loss is used for object center estimation. It is defined

as:

f =
−1
N ∑(1− Ŷxyc)

α log(Ŷxyc) (2)

g =
−1
N ∑(1−Yxyc)

β(Ŷxyc)
α log(1− Ŷxyc) (3)

Lcentre =

{
f if Yxyc = 1
g otherwise

(4)

, where α and β are hyperparameters which define the
degree of penalty reduction and down-weighting of
easy examples. For all experiments, α = 2 and β = 4
are used.
To compensate for the discretization, spatial offsets
are learned and optimized as in (Zhang et al., 2021a):

Loffset =

{
|δ̂inside−δinside| if inside
log(1+ |δ̂outside−δoutside|) otherwise

(5)

To obtain the orientation, the apparent angle α̂ is di-
rectly regressed and clamped to [−π,π]. It is opti-
mized using an L2 loss as follows:

Langle = (sin(α̂)− sin(α))2 +(cos(α̂)− cos(α))2

(6)
with α being the ground truth angle.
The dimensions are regressed as offsets δ̂k deviating



from the class average, using the L1 loss:

Ldimension = ∑
k∈{h,w,l}

|k̄ceδ̂k − k| (7)

The corner points of the projected 3D bounding box
are regressed as offsets from the discretized object
center and optimized using L1 loss. However, only
those corner points that are visible in the image are
penalized in the loss function, which is indicated by
Iinside(ki). The loss function becomes:

Lkeypoints =
∑

Nk
i=0 Iinside(ki)|δ̂ki−δki|

∑
Nk
i=0 Iinside(ki)

(8)

Additionally including a loss function for a 2D
bounding box regression task has been shown to also
improve the 3D detection performance (Zhang et al.,
2021a). Therefore, the 2D bounding box estimation
task is also added, which predicts spatial offsets from
the object center. The generalized Intersection-over-
Union loss (GIoU) is used, yielding a 2D bounding
box loss L2D:

GIoU = IoU− Ac−U
Ac (9)

L2D = 1−GIoU (10)

For the depth estimation, instead of the Laplacian
Kullback-Leibler loss (such as in MonoFLEX), we
use the Robust Kullback-Leibler loss, proposed by
(Chen et al., 2021), to overcome the issue of an in-
creasing gradient during training due to the reduced
uncertainty. It is defined as:

Lrobust KL =
1
ŵ

{
1
2 e2 + logσ |e|<=

√
2√

2|e|−1+ logσ |e|>
√

2
(11)

ŵ← αŵ+(1−α)
1
N

N

∑
i=0

1
σi

(12)

where e = |ŷ− y|/σ is the L1 error of the prediction,
σ denotes the predicted uncertainty in the estimation,
and N is the number of predictions made. α is a hy-
perparameter that determines the impact of new ob-
servations on the exponential moving average of the
inverse of the uncertainties ŵ.
Finally, the eight corner points v̂i of the 3D bounding
box which are compared in terms of a 3D spatial de-
viation to the corresponding ground truth 3D corner
points. The resulting spatial discrepancy gives rise
to an L1 loss, whose optimization enforces a strong
depth-based criterion, thus supporting different sub-
tasks:

Lbounding box =
7

∑
i=0
|v̂i− vi| (13)

The reID branch is treated as a classification during
training, where the generated embeddings are the in-
put to a linear layer that outputs a probability for ev-
ery unique object instance K in the training dataset.
To optimize this task, the cross-entropy loss is used:

LreID =−
N

∑
i=0

K

∑
k=0

Li(k) log(p(k)) (14)

with p(k) being the predicted probability that the de-
tection is object k, Li(k) the one-hot encoded repre-
sentation of the ground truth label and N the total
number of detection responses in the image.

4 RESULTS & DISCUSSION

This section presents training details and obtained ex-
perimental results of the proposed framework. Based
on quantitative and qualitative results for the detection
and tracking quality, we discuss the observed algo-
rithmic qualities and encountered failure modes. Fi-
nally, the impact of the proposed additions is demon-
strated in an ablation study.

4.1 Training & Evaluation Metrics

For all experiments, the model was trained on the
KITTI dataset (Geiger et al., 2012), using the train-
ing (5,027 images) / validation (2,981 images) split
proposed by (Voigtlaender et al., 2019). The input im-
ages were padded to 384×1280 px and AdamW was
used as the optimizer with an initial learning rate of
3×10−4, decaying by a factor of 10 at epochs 80 and
90. Overall, the network was trained for 100 epochs.
The input data was augmented using random horizon-
tal flips. Each of the prediction heads consists of two
convolutional layers with a batch norm and a ReLU
activation in between. Training involves three object
categories: passenger cars, cyclists, and pedestrians.

Training of a multi-task regression network nat-
urally faces the complexity of a specific data need.
Joint optimization for detection and tracking in a
3D space requires datasets, which provide at the
same time category labels, 3D spatial annotations and
tracking information. The employed dataset provides
this information, however, more data and/or increased
diversity would probably lead to an even better accu-
racy. For fair comparison, all experiments and com-
parisons use the same data and data split.

For object detection, the average precision on the
car class for the three different difficulty levels (easy,
medium, hard as defined by the KITTI benchmark) is
reported (see Table 1). The IoU threshold used is 0.7.



Method AP3D
Easy Moderate Hard

SMOKE (Liu et al., 2020) 14.76 12.85 11.50
MonoGeo (Zhang et al., 2021b) 18.45 14.48 12.87
Ground-aware Monocular 3D Obj. Det. (Liu et al., 2021) 23.63 16.16 12.06
MonoFlex (Zhang et al., 2021a) 23.64 17.51 14.83
Proposed Method 20.56 15.00 11.79

Table 1: The monocular 3D object detection results of the proposed method compared to state of the art methods.

The main evaluation metric for tracking used is the
higher order tracking accuracy (HOTA) (Luiten et al.,
2021). Additionally, the detection accuracy (DetA)
and the association accuracy (AssA) are reported to
better grasp the contributions of the two components.
The three metrics are defined as follows:

HOTAα =

√
∑c∈{TP}A(c)

|TP|+ |FN|+ |FP|
(15)

A(c) =
|TPA(c)|

|TPA(c)|+ |FNA(c)|+ |FPA(c)|
(16)

DetAα =
|TP|

|TP|+ |FN|+ |FP|
(17)

AssAα =
1
|TP| ∑

c∈{T P}
A(c) (18)

α is the confidence threshold at which detections
are counted as positive. TP, FN and FP are true pos-
itive, false negative and false positive detections re-
spectively, while TPA(c), FNA(c) and FPA(c) denote
the true positive, false negative and false positive as-
sociations of a true positive detection. c are the ele-
ments of the set of true positive detections. The final
metric is approximated by averaging over 19 different
thresholds instead of using the integral:

HOTA =≈ 1
19 ∑

α∈{0.05,...,0.95}
HOTAα (19)

DetA =≈ 1
19 ∑

α∈{0.05,...,0.95}
DetAα (20)

AssA =≈ 1
19 ∑

α∈{0.05,...,0.95}
AssAα (21)

4.2 Quantitative Results

Table 1 presents a detection accuracy comparison in
terms of AP scores to some recent competing ap-
proaches. Scores in this table originate from an
IoU evaluation within a metric 3D space, therefore
slight regression errors in depth, location or orienta-
tion quickly lead to a strong decay in the computed
score. As it can be seen from the table, the obtained

detection accuracy is comparable to the current state-
of-the art. For hard examples represent the proposed
scheme exhibits some weakness, mainly due to ob-
jects which are small-sized and near the image border,
where enforcing depth constraints is less effective.

Table 2 compares the tracking results on the car
class to a baseline method, which solely relies on a
track association based on IoU with predictions from
a Kalman filter. The results show that the proposed
method is an improvement over the baseline, espe-
cially regarding the AssA criterion, where the dif-
ference was the most pronounced. We attribute this
improvement to the introduced ReID representation
which generates an improvement especially for vehi-
cles, which are in the view periphery, far from the
image center. In this region, upon translatory mo-
tion or in case of a turning camera (observer vehicle),
motion-based association quickly degrades and ReID
feature mitigate this problem to a certain extent.

Method HOTA DetA AssA
Baseline (Kalman Filter) 30.86 22.79 42.68
Proposed Method 30.96 22.89 42.81

Table 2: The monocular 3D multi-target tracking results of
the proposed method compared to the Kalman Baseline.

4.3 Qualitative Results

In Figure 3, qualitative results on the KITTI vali-
dation dataset are shown. Additionally, in Figure 4
the proposed method is compared qualitatively to the
Kalman Filter baseline. As it can be seen from these
figures, a situation of a rapid change in the underlying
motion characteristics of the observed vehicle leads
to association problems. The Kalman Filter, as it is
based on purely kinematic attributes, struggles with
such sudden changes in motion. In contrast, the reID
network manages to correctly match the detection re-
sponses and establish consistent trajectories.

4.4 Ablation Study

To demonstrate the impact of the various proposed
improvements, Table 3 shows the results obtained



Figure 3: Qualitative tracking results of the proposed method on the KITTI validation set. Same coloured bounding boxes
denote the same track identity assigned.

Method HOTA DetA AssA
Without attention in backbone 30.04 21.88 42.34
Without Robust KL loss 29.57 21.23 42.57
With vanilla CNNs instead of Transformer Encoder 30.25 21.77 43.5
Full model 30.96 22.89 42.81

Table 3: The impact of the proposed changes to the 3D multi-target tracking results.

without the individual changes. All experiments were
conducted on the KITTI validation set and to combat
run-to-run variance, the results have been averaged
over three runs. As one can see, the additional at-
tention in the backbone feature extractor showed the
most impact in the DetA metric. The use of the ro-
bust Kullback-Leibler loss led to the greatest overall
improvement and affected the DetA the most. Finally,

the standard CNNs had a better AssA than the pro-
posed method but due to their negative impact on the
DetA, the overall HOTA was still lower compared to
the Transformer Encoder reID network.



Figure 4: Comparison between proposed reID approach (left) and simple Kalman Filter (right) on the KITTI validation set.

5 Conclusion

In this work, we proposed a representation-enhanced
end-to-end Deep Learning approach for 3D multi-
target detection and tracking, that utilizes a Trans-
former Encoder sub-network to extract representative
reID features. This approach facilitates an improved
tracking performance compared to a motion-based
baseline on the KITTI benchmark dataset. Regarding
monocular 3D object detection, the proposed method
is competitive with current SOTA models.
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